Power System Restoration With Transient Stability

Australian National University

Terrence W.K. Mak, Hassan Hijazi, and Pascal Van Hentenryck

Power System Restoration

- Why? Natural disasters, infrastructure ageing, operator errors ...
- Outcome: A city could be in a total blackout

Restoration Ordering Problem

• Goal: Compute the best restoration ordering $[x_1, x_2, x_3, ..., x_N]$ of damaged items such that loads could be brought up as quickly as possible [PSCC'11]

Transient Stability Assumption

- Assumption: Traversing from one steady state to the other must always be feasible
- What we know: Different generator dispatches will have different rotor stability [PSCC'14]

Case	Bus 1	Bus 2	Bus 1	Bus 2	Gen 1 Pow.	Gen 2 Pow.	1st Swing
	Volt. (kV)	Volt. (kV)	Ang. (deg)	Ang. (deg)	(MW/Mvar)	(MW/Mvar)	(deg)
1	146.28	97.24	0.00	-47.58	221.12/143.46	20.00/18.00	44.229
2	146.28	146.28	0.00	-35.33	207.42/28.05	20.00/78.32	31.249
3	146.28	141.725	0	-12.14	102.59/10.66	102.59/10.66	10.385
4	146.28	123.84	0.00	0.00	61.05/48.08	143.85/-30.00	0.619
5	146.28	146.28	0.00	0.00	45.37/6.10	157.31/3.16	0.002

Stability Enhancement Routine

 Research goal: Given a restoration order, can we guarantee rotor stability?

- Challenge: Rotor swings are governed by 1st order differential equations.
- We design a non-linear model including generator dispatches to minimize the rotor swings [AAAI'15]

Experimental Results

- Study: whether the steady states returned by the ROP are transient-stable
- Measure: Minimum change in generator dispatches to ensure transient stability
- Benchmarks: 6, 14, 30, 39, 57 bus from MATPOWER
- Implementation: AMPL with IPOPT 3.11

0.14 0.49691 0.49698

0.20 0.00002 0.00002

6 Bus						14 Bus			30 Bus			
	Maximum Rotor Swing				Maximum Rotor Swing				Maximum Rotor Swing			
Gen. Reactance	90	40	10	1	90	40	10	1	90	40	10	1
0.02	0.00002	0.00002	0.00002	0.17967	0.00000	0.00000	0.00000	6.53902	0.00004	0.00003	0.00004	2.91547
0.06	0.00003	0.00003	0.00003	0.10593	0.00000	0.00000	0.00000	8.67193	0.00004	0.00003	0.00004	3.07084
0.10	0.00003	0.00002	0.00002	0.00843	0.00000	0.00000	0.00000	8.18311	0.00004	0.00004	0.00004	3.76922
0.14	0.00002	0.00003	0.00002	0.30335	0.00000	0.00000	0.00000	6.09923 (1)	0.00004	0.00005	0.00004	4.17696
0.20	0.00003	0.00003	0.00003	1.01248	0.00000	0.00000	0.00000	3.66457 (3)	0.00004	0.00004	0.00004	4.07680
		3	39 Bus				57 Bus					
Maximum Rotor Swing						Maximum Rotor Swing						
Gen. Reactance	90	40	10	1	90	40	10	1				
0.02	0.00001	0.00001	20.52951	7.95879 (6)	0.00000	0.00000	0.66260	131.39311				
0.06	0.00001	0.00001	81.80927 (1)	0.00002 (7)	0.00000	0.00000	1.36766	1.12417 (21)				
0.10	0.42052	0.28436(1)	78.24781	48.13747 (5)	0.23766	0.23766	39.33088	1.14312 (21)				

60.35684 41.99449 (5) 0.68299 0.67222 (1) 73.84672 1.26118 (21)

34.26957 69.35875 (3) 0.83704 0.83744 120.01411 (1) 1.41655 (21)